SoalUtbk Trigonometri. November 10, 2020. Pada tutorial sebelumnya kita telah mempelajari tentang turunan fungsi aljabar maka dalam kesempatan ini dilanjutkan dengan turunan trigonometri. Soal soal utbk matematika 2019 yang dibahas adalah soal soal yang dipilih secara random. Limit Fungsi Trigonometri Media Belajar. Unknown23.51 BAHAN BELAJAR MATEMATIKA Turunan fungsi trigonometri merupakan subtopik differensial yang cukup rumit karena tidak hanya harus memahami konsep turunan, tetapi kita juga harus memahami konsep trigonometri. Pada turunan fungsi trigonometri terdapat beberapa ketetapan umum yang sudah menjadi acuan dasar untuk menyelesaikan soal-soal. ContohSoal Cerita Aplikasi Turunan. martha yunanda contoh soal. Dalam halaman ini, akan diberikan beberapa permasalahan atau soal soal cerita tentang turunan beserta pembahasannya. Adapun soal ini bisa dijadikan sebagai contoh soal SBMPTN tentang turunan, karena soal-soal ini saya ambil dari sebuah buku persiapan menghadapi tes SBMPTN. Materisoal dan pembahasan persamaan trigonometri berbentuk a cos x b sin x c september 21 2020. Pengertian nilai stasioner fungsi. Fungsi naik dan fungsi turun diketahui sebuah peluru ditembakkan ke atas dan lintasannya digambarkan sebagai kurva dari fungsi y fx seperti pada gambar 1. Pada kesempatan ini akan kita bahas tentang titik stasioner Matematikastudycentercom- Kumpulan bank soal latihan persiapan semester 2 materi turunan fungsi trigonometri matematika kelas 11 SMA untuk paket ujian blok atau ulangan harian kenaikan kelas. Soal No. 1 Diketahui fungsi f (x) = sin 5x. Jika f' (x) adalah turunan pertama dari f (x), maka f ' (x) =. A. − 5 cos 5x B. − 1/5 cos 5x C. − cos 5x Soaldan pembahasan turunan fungsi trigonometri. 21 kunci jawaban tema 2 kelas 6 uts gif. Meminimumkan biaya rata rata dalam produksi suatu barang biaya totalnya adalah tc 0 4q2 500q 16000 rupiah. Sebuah papan digunakan untuk mencapai pagar setinggi 8 kaki untuk menopang dinding yang berada 1 meter di belakang pagar. Soal dan pembahasan Turunanfungsi trigonometri merupakan subtopik differensial yang cukup rumit karena tidak hanya harus memahami konsep turunan, tetapi kita juga harus memahami konsep trigonometri. Pada turunan fungsi trigonometri terdapat beberapa ketetapan umum yang sudah menjadi acuan dasar untuk menyelesaikan soal-soal. Meski demikian, adakalanya kita harus mengubah bentuk fungsi trionometri yang diberikan menjadi bentuk lain yang lebih sederhana agar mendekati pola umum yang menjadi ketetapan. VHQHgu. Kumpulan bank soal latihan persiapan semester 2 materi turunan fungsi trigonometri matematika kelas 11 SMA untuk paket ujian blok atau ulangan harian kenaikan kelas. Soal No. 1 Diketahui fungsi fx = sin 5x. Jika f’x adalah turunan pertama dari fx, maka f x =…. A. − 5 cos 5x B. − 1/5 cos 5x C. − cos 5x D. 5 cos 5x E. 1/5 cos 5x Soal No. 2 Diketahui fungsi fx = 2 sin 2x. Jika f x adalah turunan pertama dari fx, maka f π /2 =…. A. − 8 B. − 4 C. − 2 D. 0 E. 2 Soal No. 3 Diketahui fungsi fx = 6 cos 3x. Turunan pertama dari fx adalah….. A. − 18 sin 3x B. − 6 sin 3x C. − 2 sin 3x D. 6 sin 3x E. 18 sin 3x Soal No. 4 Diketahui fungsi fx = sin3 5x. Turunan pertama dari fx adalah f x =…. A. 5 cos2 5x ⋅ sin 5x B. 5 sin2 5x ⋅ cos 5x C. 10 cos2 5x ⋅ sin 5x D. 15 sin2 5x ⋅ cos 5x E. 15 cos2 5x ⋅ sin 5x Soal No. 5 Diketahui fungsi fx = cos3 5x. Turunan pertama dari fx adalah f x =…. A. −5 cos2 5x ⋅ sin 5x B. 5 sin2 5x ⋅ cos 5x C. −10 cos2 5x ⋅ sin 5x D. 15 sin2 5x ⋅ cos 5x E. −15 cos2 5x ⋅ sin 5x Soal No. 6 Turunan dari fungsi fx = sin4 5x adalah…. A. f’x = 10 sin2 5x ⋅ sin 10x B. f’x = 10 sin 5x ⋅ sin2 10x C. f’x = 10 sin3 5x ⋅ sin 10x D. f’x = 10 sin 5x ⋅ sin3 10x E. f’x = 10 sin3 5x ⋅ sin3 10x Soal No. 7 Diketahui fx = sin3 5x+10. Turunan pertama dari fx adalah f’x =…. A. 3 sin2 5x + 10⋅ cos 5x + 10 B. 10 sin2 5x + 10⋅ cos 5x + 10 C. 15 sin2 5x + 10⋅ cos 5x + 10 D. 5 cos2 5x + 10 E. 15 cos3 5x + 10 Soal No. 8 Turunan pertama dari fungsi fx = x3 ⋅ cos 2x adalah…. A. 3x2 cos 2x + 2x3 sin 2x B. − 3x2 cos 2x − 2x3 sin 2x C. 3x2 cos 2x − 2x3 sin 2x D. 2 cos 2x + 2x3 sin 2x E. 3x2 cos 2x − 2 sin 2x Soal No. 9 Jika y = 2 sin 3x − 4 cos 2x, maka dy/dx =…. A. 2 cos 3x − 4 sin 2x B. 6 cos 3x − 4 sin 2x C. 2 cos 3x + 4 sin 2x D. 6 cos 3x + 8 sin 2x E. − 6 cos 3x − 8 sin 2x Soal No. 10 Diketahui y = 4x5 + sin 3x + cos 4x, maka dy/dx =…. A. 20x4 + 3cos 3x + 4 sin 4x B. 20x4 + cos 3x − sin 4x C. 20x4 − 3cos 3x + 4 sin 4x D. 20x4 − 3cos 3x − 4 sin 4x E. 20x4 + 3cos 3x − 4 sin 4x Soal dan Pembahasan Turunan Fungsi Trigonometri. Rumus-rumus yang akan digunakan dalam penyelesaian turunan fungsi trigonometri adalah sebagai berikut 1. Jika fx = sin x maka f'x = cos x 2. Jika fx = cos x maka f'x = -sin x 3. Jika fx = tan x maka f'x = sec²x Tips Setiap fungsi trigonometri yang hurufnya dimulai dengan huruf c, maka turunannya bernilai negatif Soal dan Pembahasan Turunan Fungsi Trigonometri Soal 1 Turunan pertama fungsi y = cos 2x³ - x² ialah..... A. y' = sin 2x³ - x² B. y' = -sin 2x³ - x² C. y' = 6x² - 2x cos 2x³ - x² D. y' = 6x² - 2x sin 2x³ - x² E. y' = -6x² - 2x sin 2x³ - x² Pembahasan y = cos 2x³ - x² Misalkan ux = 2x³ - x² maka u'x = 6x² - 2x y = cos ux y' = -sin ux . u'x y' = -sin 2x³ - x² . 6x² - 2x y' = -6x² - 2x.sin2x³ - x² JAWABAN E Soal 2 Jika y = x² sin 3x, maka dy/dx = ..... A. 2x sin 3x + 2x² cos x B. 2x sin 3x + 3x² cos 3x C. 2x sin x + 3x² cos x D. 3x cos 3x + 2x² sin x E. 2x² cos x + 3x sin 3x Pembahasan y = x² sin 3x Misalkan ux = x² maka u'x = 2x vx = sin 3x maka v'x = 3 cos 3x y = ux . vx y' = u'x.vx + ux.v'x = 2x . sin 3x + x². 3 cos 3x = 2x sin 3x + 3x²cos 3x JAWABAN B Soal 3 Diketahui fungsi Fx = sin²2x + 3 dan turunan pertama dari F adalah F'. Maka F'x =..... A. 4 sin 2x + 3 cos 2x + 3 B. -2 sin 2x + 3 cos 2x + 3 C. 2 sin 2x + 3 cos 2x + 3 D. -4 sin 2x + 3 cos 2x + 3 E. sin 2x + 3 cos 2x + 3 Pembahasan Fx = sin²2x + 3 Misalkan ux = sin 2x + 3, maka u'x = cos 2x + 3 . 2 = 2cos 2x + 3 2 berasal dari turunan 2x + 3 Fx = [ux]² F'x = 2[ux]¹ . u'x = 2sin 2x + 3 . 2cos 2x + 3 = 4sin 2x + 3 cos 2x + 3 JAWABAN A Soal 4 Diketahui fx = sin³ 3 - 2x. Turunan pertama fungsi f adalah f' maka f'x = ..... A. 6 sin² 3 - 2x cos 3 - 2x B. 3 sin² 3 - 2x cos 3 - 2x C. -2 sin² 3 - 2x cos 3 - 2x D. -6 sin 3 - 2x cos 6 - 4x E. -3 sin 3 - 2x sin 6 - 4x Pembahasan fx = sin³ 3 - 2x Misalkan ux = sin 3 - 2x, maka u'x = cos 3 - 2x . -2 u'x = -2cos 3 - 2x -2 berasal dari turunan 3-2x fx = [ux]³ f'x = 3[ux]² . u'x f'x = 3sin²3 - 2x . -2cos 3 - 2x = -6 sin²3 - 2x . cos 3 - 2x = -3 . 2 sin 3 -2x.sin 3 -2x.cos 3 - 2x = -3 . sin 3 - 2x. 2 sin 3 - 2x.cos 3 - 2x ingat sin 2x = 2 sin x = -3 sin 3 - 2x sin 23 - 2x = -3 sin 3 - 2x sin 6 - 4x JAWABAN E Soal 5 Turunan pertama dari Fx = sin³ 5 - 4x adalah F'x = ..... A. 12 sin² 5 - 4x cos 5 - 4x B. 6 sin 5 - 4x sin 10 - 8x C. -3 sin² 5 - 4x cos 5 - 4x D. -6 sin 5 - 4x sin 10 - 8x E. -12 sin² 5 - 4x cos 10 - 8x Pembahasan Fx = sin³ 5 - 4x Misalkan ux = sin 5 - 4x, maka u'x = cos 5 - 4x . -4 u'x = -4cos 5 - 4x -4 berasal dari turunan 5 - 4x fx = [ux]³ f'x = 3[ux]² . u'x f'x = 3sin²5 - 4x . -4cos 5 - 4x = -12 sin²5 - 4x . cos 5 - 4x = -6 . 2 sin 5 - 4x.sin 5 - 4x.cos 5 - 4x = -6 . sin 5 - 4x. 2 sin 5 - 4x.cos 5 - 4x ingat sin 2x = 2 sin x = -6 sin 5 - 4x sin 25 - 4x = -6 sin 5 - 4x sin 10 - 8x JAWABAN D Soal 6 Jika fx = $\frac{sin x + cos x}{sin x}$, sin x ≠ 0 dan f' adalah turunan f, maka f'$\frac{π}{2}$ = ..... A. -2 B. -1 C. 0 D. 1 E. 2 Pembahasan fx = $\frac{sin x + cos x}{sin x}$ Misalkan * ux = sin x + cos x , maka u'x = cos x - sin x * vx = sin x, maka v'x = cos x fx = $\frac{ux}{vx}$ f'x = $\frac{u'x.vx-ux.v'x}{[vx]^{2}}$ = $\frac{cos x - sin x.sin x-sin x + cos x.cos x}{[sin x]^{2}}$ f'$\frac{π}{2}$ = $\frac{cos \frac{π}{2} - sin \frac{π}{2}.sin \frac{π}{2}-sin \frac{π}{2} + cos \frac{π}{2}.cos \frac{π}{2}}{[sin \frac{π}{2}]^{2}}$ f'$\frac{π}{2}$ = $\frac{0 - 1.1-1 + 0.0}{1^{2}}$ f'$\frac{π}{2}$ = $\frac{-1 - 0}{1}$ f'$\frac{π}{2}$ = -1 JAWABAN B Soal 7 Turunan fungsi y = tan x adalah..... A. cotan x B. cos² x C. sec² x + 1 D. cotan² x + 1 E. tan²x + 1 Pembahasan y = tan x y = $\frac{sin x}{cos x}$ Misalkan ux = sin x, maka u'x = cos x vx = cos x, maka v'x = -sin x y = $\frac{ux}{vx}$ y = $\frac{u'x.vx-ux.v'x}{[vx]^{2}}$ = $\frac{cos x-sin x . -sin x}{[cos x]^{2}}$ = $\frac{cos^{2}x+ sin^{2}x}{cos^{2}x}$ = $\frac{sin^{2}x+ cos^{2}x}{cos^{2}x}$ = $\frac{sin^{2}x}{cos^{2}x}$ + $\frac{cos^{2}x}{cos^{2}x}$ = $\frac{sin x}{cos x}^{2}$ + 1 = tan x² + 1 = tan²x + 1 JAWABAN E Soal 8 Jika fx = a tan x + bx dan f'$\frac{π}{4}$ = 3, f'$\frac{π}{3}$ = 9, maka a + b = ..... A. 0 B. 1 C. $\frac{π}{2}$ D. 2 E. π Pembahasan fx = a tan x + bx f'x = a . $\frac{1}{cos^{2}x}$ + b f'$\frac{π}{4}$ = a . $\frac{1}{cos^{2}\frac{π}{4}}$ + b 3 = a . $\frac{1}{√2/2^{2}}$ + b 3 = 2a + b ............1 f'$\frac{π}{3}$ = a . $\frac{1}{cos^{2}\frac{π}{3}}$ + b 9 = a . $\frac{1}{½^{2}}$ + b 9 = 4a + b..............2 Eliminasi persamaan 1 dan 2 diperoleh 2a + b = 34a + b = 9 - -2a = -6 a = -6/-2 a = 3 Subtitusi nilai a = 3 ke persamaan 1, diperoleh 23 + b = 3 6 + b = 3 b = 3 - 6 b = -3 Jadi, a + b = 3 + -3 = 0 JAWABAN A Soal 9 Jika r = $\sqrt{sin θ}$, maka dr/dθ = ..... A. $\frac{1}{2\sqrt{sin θ}}$ B. $\frac{cos θ}{2sin θ}$ C. $\frac{cos θ}{2\sqrt{sin θ}}$ D. $\frac{-sin θ}{2cos θ}$ E. $\frac{2cos θ}{\sqrt{sin θ}}$ Pembahasan Misalkan u = sin θ, maka u' = cos θ r = $\sqrt{sin θ}$ r = $\sqrt{u}$ r = $u^{½}$ r' = $\frac{1}{2√u}$ . u' r' = $\frac{1}{2\sqrt{sin θ}}$ . cos θ r' = $\frac{cos θ}{2\sqrt{sin θ}}$ JAWABAN CSoal 10 Jika fx = -cos² x - sin²x, maka f'x adalah..... A. 2sin x - cos x B. 2cos x - sin x C. sin x. cos x D. 2sin x cos x E. 4sin x cos x Pembahasan fx = -cos² x - sin²x fx = -1 - sin²x - sin²x fx = -1 - 2sin²x fx = 2sin²x - 1 Misalkan ux = sin x, maka u'x = cos x fx = 2[ux]² - 1 f'x = 4 . ux¹. u'x - 0 f'x = 4 sin x cos x JAWABAN E Demikian postingan "Soal dan Pembahasan Turunan Fungsi Trigonometri" kali ini mudah-mudahan dengan beberapa soal dan pembahasan di atas dapat memudahkan anda menyelesaikan soal-soal yang berkaitan dengan turunan fungsi trigonometri. Hai Quipperian, saat mendengar istilah turunan pasti kamu akan berpikir jalanan yang menurun kan? Siapa sangka, di dalam Matematika juga terdapat turunan, lho. Jika turunan ini dikenakan pada fungsi trigonometri, maka turunannya disebut turunan fungsi trigonometri. Apa yang dimaksud turunan fungsi trigonometri? Daripada penasaran, yuk simak selengkapnya! Pengertian Turunan Fungsi Trigonometri Sebelum memahami pengertian turunan fungsi trigonometri, kamu harus tahu dulu apa itu fungsi trigonometri. Fungsi trigonometri adalah suatu fungsi yang memuat variabel x di bagian sinus, cosinus, serta tangennya. Dengan syarat, perbandingannya sinus, cosinus, dan tangen harus terletak di bagian basis, bukan sebagai pangkat. Perhatikan contoh berikut. Lantas, apa yang dimaksud turunan fungsi trigonometri? Turunan fungsi trigonometri adalah suatu proses turunan matematis yang melibatkan fungsi trigonometri. Proses turunan pada fungsi ini bisa berlangsung dua kali jika koefisiennya lebih dari satu. Perhatikan contoh berikut. fx = cos2x …. 1 Untuk menurunkan fungsi di atas, kamu harus melakukan dua kali turunan, yaitu turunan terhadap cosinus dan 2x. Semakin rumit komposisi variabelnya, semakin panjang pula proses penurunannya. fx = cos2x2 + 3x …. 2 Persamaan 1 memiliki variabel yang lebih sederhana dibandingkan persamaan 2. Pada persamaan 1, kamu hanya perlu menurunkan kosinus dan 2x saja. Namun, pada persamaan 2, kamu harus menurunkan cosinus, 2x2, dan 3x. Tak perlu khawatir, ya, karena Quipper Blog akan membantumu untuk memahami konsep turunan ini. Apa Saja Turunan Fungsi Trigonometri? Saat belajar trigonometri, kamu sudah mengenal istilah sinus, kosinus, dan tangen kan? Nah turunan fungsi trigonometri juga termasuk ketiganya, yaitu turunan terhadap fungsi sinx, turunan terhadap cosx, turunan terhadap tanx, turunan terhadap secx, dan turunan terhadap cosecx. Dalam penerapannya, fungsi ini bisa dikembangkan layaknya fungsi aljabar, misalnya fungsi komposisi yang memuat trigonometri. Apa Saja Rumus Turunan Fungsi Trigonometri? Kamu pasti sudah paham kan dengan konsep turunan secara umum? Misalnya, jika fx = 2x diturunkan terhadap x, akan dihasilkan f’x = 2, jika fx = 2x2 diturunkan terhadap x, akan dihasilkan f’x = 4x. Nah, seperti apa contoh turunan fungsi trigonometri? 1. Turunan terhadap fungsi sinx Jika fungsi yang memuat sinx diturunkan terhadap x, akan dihasilkan fungsi cosx. Perhatikan contoh berikut. fx = sinx → f’x = cosx 2. Turunan terhadap fungsi cosx Jika fungsi yang memuat cosx diturunkan terhadap x, akan dihasilkan fungsi -sinx. Perhatikan contoh berikut. fx = cosx → f’x = -sinx Untuk memudahkan kamu mengingat, simak urutan SUPER “Solusi Quipper” berikut ini. Tanda panah menunjukkan hasil turunannya. Turunan fungsi sinus dan cosinus di atas merupakan dasar yang nantinya akan kamu gunakan untuk menyelesaikan soal-soal terkait turunan fungsi trigonometri. Mungkin kamu bertanya-tanya, padahal kan fungsi trigonometri itu beragam jenisnya, ada yang tanx, cosecx, dan secx. Bagaimana menyelesaikannya? Berikut ini tabel rumus turunan trigonometri yang bisa kamu jadikan acuan belajar, ya. NoFungsi fxHasil turunan f’x1sinxcosx2cosx-sinx3tanxsec2x4cotx-cosec2x5secxsecx . tanx6cosecx-cosecx . cotanx7sinax + bacosax + b8cosax + b-asinax + b9k . sinnax + bk . na . sinn – 1 ax + b.cosax + b10k . cosnax + b-k . na . cosn – 1 ax + b.sinax + b11 Selain rumus pada tabel di atas, kamu juga harus mengenal beberapa rumus identitas untuk memudahkan penyelesaian soal-soal fungsi trigonometri. ⇒ Rumus identitas perbandingan ⇒Rumus identitas Pythagoras sin2nx + cos2nx = 1 tan2 + 1 = sec2nx tan2 + 1 = cosec22nx ⇒Rumus sinus sudut rangkap ⇒Kosinus sudut rangkap Sifat Turunan Fungsi Trigonometri Apakah kamu masih ingat sifat turunan fungsi aljabar? Ternyata, sifat turunan fungsi trigonometri juga sama dengan sifat turunan aljabar, lho. Bedanya, pada fungsi trigonometri kamu juga harus menurunkan si trigonometrinya sendiri. Apa iya sih sifat kedua jenis fungsi ini sama? Yuk, kita buktikan. Sifat turunan fungsi aljabar Sifat turunan fungsi trigonometri Seperti kamu ketahui, tanx merupakan perbandingan antara sinx dan cosx. Dengan mengacu pada sifat turunan fungsi aljabar di atas, diperoleh Terbukti kan, jika sifat turunan fungsi aljabar juga berlaku pada fungsi trigonometri? Contoh Turunan Fungsi Trigonometri? Adapun contoh turunan fungsi trigonometri adalah sebagai berikut. Diketahui fx = sin2x + 10, bagaimanakah bentuk turunan fungsinya? Mula-mula, kamu harus menurunkan fungsi di dalam kurung, 2x + 10. Hasil turunannya adalah 2 Selanjutnya, turunkan perbandingan sinusnya. Hasil turunannya adalah cos. Mengacu pada rumus nomor 7 pada tabel, yaitu fx = sinax + c yang memiliki turunan f’x = a cosax + c, diperoleh fx = sin2x + 10 → f’x = 2cos2x + 10 Lantas, bagaimana jika bentuk fungsinya memuat perbandingan berpangkat, misalnya fx = 2sin25x2 + 6? Untuk mencari turunannya, kamu bisa menggunakan rumus nomor 9, yaitu fx = k . sinnax + b dengan hasil turunan f’x = k . na . sinn – 1 ax + b.cosax + b. Dengan demikian, diperoleh fx = 2sin25x2 + 6 f’x = 2 2 10x sin5x2 + 6cos5x2 + 6 Jadi, turunan dari fx = 2sin25x2 + 6 adalah f’x = 2 2 10x sin5x2 + 6cos5x2 + 6. Aplikasi Turunan Fungsi Trigonometri dalam Kehidupan Sehari-Hari Adapun aplikasi turunan fungsi trigonometri dalam kehidupan sehari-hari adalah sebagai berikut. Menentukan jarak optimal antara tempat duduk dan layar bioskop. Menentukan papan terpendek untuk menopang pagar atau sejenisnya. Mencari kemiringan grafik yang bersinggungan dengan garis lurus di suatu titik. Memperkirakan puncak arus mudik lebaran, sehingga bisa mengantisipasi terjadinya kemacetan. Memperkirakan waktu optimal untuk produksi suatu barang, sehingga bisa mendapatkan penjualan yang optimal pula. Memperkirakan suhu terendah dan tertinggi di negara empat musim. Contoh Soal Turunan Fungsi Trigonometri Untuk mengasah pemahamanmu tentang materi kali ini, yuk simak contoh soal berikut. Contoh Soal 1 Tentukan turunan pertama dari fungsi berikut. Pembahasan Mula-mula, kamu harus menguraikan fungsi tersebut menurut rumus yang umum berlaku. Dalam hal ini, gunakan rumus identitas kebalikan dan perbandingan. Lalu, turunkan bentuk penyederhanaan fungsi di atas. f x = 3sin x = tan x ⇔ fx = 3cos x – sec2 x Jadi, turunan fx=3cos⁡x-1/cos⁡x adalah fx = 3cos x – sec2 x Contoh Soal 2 Diketahui fx= Tentukan turunan pertama dari fungsi tersebut? Pembahasan Dari fungsi di atas, kamu dapat memisalkan sebagai berikut. Misal ux = 2x4 → u’x = 8x3 vx = tan5x → v’x = 5sec25x Untuk mencari turunan pertamanya, gunakan sifat turunan fungsi aljabar berikut. fx = ux.vx ⇒ fx = ux.vx+ux.vx Dengan demikian Jadi, turunan pertama dari fx= adalah f’x = 2x34 tan5x + 5xsec25x. Contoh Soal 3 Diketahui fx=x +8πx dan gx=f’x-√3f”x. Berapakah nilai x yang memenuhi g’x = 0, dengan 0 ≤ x ≤ π? Pembahasan Mula-mula, kamu harus menentukan turunan pertama dan kedua fx. fx = sinx +8πx f'x = cos cos x +8π f”x = x Lalu, substitusikan f’x dan f’’x ke persamaan gx. Selanjutnya, tentukan turunan pertama dari gx. Jika, g’x = 0, berlaku Berdasarkan persamaan trigonometri untuk tangen, diperoleh Jadi, nilai x yang memenuhi adalah π/3 Itulah pembahasan Quipper Blog kali ini. Semoga bermanfaat, ya. Untuk melihat materi lengkapnya, yuk buruan gabung Quipper Video. Salam Quipper! – Pada tulisan ini kamu akan belajar contoh soal turunan fungsi trigonometri beserta dengan jawabannya. Jika kamu konsentrasi, pasti mudah banget turunan fungsi trigonometri dan contoh soal ini memerlukan rumus dasar untuk menyelesaikannya. Rumus dasar tersebut sudah aku bahas secara lengkap di tulisan Contoh Soal Turunan Fungsi Trigonometri Menggunakan Rumus DasarBerikut ini adalah rumus dasar turunan fungsi trigonometri yang sudah kita buktikan pada tulisan sebelumnya, kamu bisa lihat pembuktian rumus turunan trigonometri pada link tersebut.\\color{red}{y = \sin x \to y’ = \cos x}\\\color{red}{y = \cos x \to y’ = – \sin x}\\\color{red}{y = \tan x \to y’ = \sec^{2} x}\\\color{red}{y = \cot x \to y’ = – \csc^{2} x}\\\color{red}{y = \sec x \to y’ = \sec x . \tan x}\\\color{red}{y = \csc x \to y’ = – \csc x . \cot x}\Tentukan turunan dari fungsi-fungsi berikut ini!1. \y = 2 \sin x\2. \y = 3 \sin x + \tan x\3. \y = 2 \cos x + 5 \sin x\4. \y = 3x \cos x\5. \y = \sin x \cos x\Jawab Nomor 1Dengan menggunakan “aturan hasil kali” pada aturan turunan fungsi aljabar, kita bisa mengabaikan konstanta yang ada di depan.\\begin{aligned} y &= 2 \sin x \\ y’ &= 2 \cos x \end{aligned}\Jawab Nomor 2\\begin{aligned} y &= 3 \sin x + \tan x \\ y’ &= 3 \cos x + \sec^{2} x \end{aligned}\Jawab Nomor 3\\begin{aligned} y &= 2 \cos x + 5 \sin x \\ y’ &= 2 - \sin x + 5 \cos x \\ &= -2 \sin x + 5 \cos x \end{aligned}\Jawab Nomor 4Kita akan gunakan aturan hasil kali pada turunan, yaitu \f'x = u’ v + u v’\\fx = 3x \cos x\\u = 3x \to u’ = 3\\v = \cos x \to v’ = – \sin x\\\begin{aligned} f'x &= u’ v + u v’ \\ &= 3 \cos x + 3x - \sin x \\ &= 3 \cos x – 3x \sin x \end{aligned}\Jawab Nomor 5\y = \sin x \cos x\\u = \sin x \to u’ = \cos x\\v = \cos x \to v’ = – \sin x\\\begin{aligned} f'x &= u’ v + u v’ \\ &= \cos x \cos x + \sin x - \sin x \\ &= \cos^{2} x – \sin^{2} x \\ &= \cos 2x \end{aligned}\Gimana, mudah banget kan?Berikutnya kita akan pelajari turunan fungsi trigonometri dan contohnya yang lebih kompleks, yaitu menggunakan rumus Contoh Soal Turunan Fungsi Trigonometri Menggunakan Rumus Pengembangan IRumus ini merupakan pengembangan dari rumus dasar turunan trigonometri yang menggunakan aturan rantai, jadi sebaiknya kamu pahami dulu mengenai aturan rantai fungsi ini adalah rumus pengembangan I turunan fungsi trigonometri.\\color{red}{y = \sin u \to y’ = u’ . \cos u}\\\color{red}{y = \cos u \to y’ = – u’ . \sin u}\\\color{red}{y = \tan u \to y’ = u’ . \sec^{2} u}\\\color{red}{y = \cot u \to y’ = – u’ . \csc^{2} u}\\\color{red}{y = \sec u \to y’ = u’ . \sec u . \tan u}\\\color{red}{y = \csc u \to y’ = – u’ . \csc u . \cot u}\Aku akan kasih satu contoh soal turunan fungsi trigonometri menggunakan aturan rantai, agar kamu bisa memahami maksud rumus pengembangan I turunan dari fungsi \y = \sin 3x\!JawabKita akan mencari \y’\ atau \\frac{dy}{dx}\ turunan y terhadap x.Misalkan \u = 3x\ maka \\frac{du}{dx} = 3\Karena \3x\ dimisalkan menjadi \u\ maka fungsinya menjadi \y = \sin u\. Sehingga turunannya adalah \\frac{dy}{du} = \cos u\.\\displaystyle \begin{aligned} \frac{dy}{dx} &= \frac{dy}{du} . \frac{du}{dx} \\ y’ &= \cos u . 3 \\ y’ &= \color{red}{3 . \cos u} \\ y’ &= 3 \cos 3x \end{aligned}\Itulah perhatikan yang aku kasih warna merah pada proses diatas!\3\ merupakan turunan dari \u = 3x\, artinya \u’ = 3\Jadi kita bisa menuliskan rumus umumnya, turunan dari \y = \sin u\ adalah \y’ = u’ \cos u\. Sama kan dengan rumus pengembangan I diatas?Itulah alasan kenapa rumus pengembangan ini berasal dari aturan rumus pengembangan I ini sama halnya dengan rumus dasar turunan fungsi trigonometri, bedanya hanya ditambahkan \u’\ di sekarang kita akan coba jawab pertanyaan-pertanyaan yang ada dibawah ini menggunakan rumus pengembangan I. Inilah dia contoh soal turunan fungsi trigonometri dan turunan fungsi trigonometri berikut!1. \y = \sin 3x\2. \y = \tan 2x-5\3. \y = \cos 5x^{3} + 2x -8\Jawab Nomor 1\y = \sin 3x\Misalkan \u = 3x\ maka \u’ = 3\\y’ = u’ . \cos u\\y’ = 3 . \cos 3x\\y’ = 3 \cos 3x\Sama kan dengan menggunakan aturan rantai?Bedanya, cara ini lebih simpel. Ya iyalah, namanya juga cara Nomor 2\y = \tan 2x-5\Misalkan \u = 2x-5\ maka \u’ = 2\\y’ = u’ . \sec^{2} u\\y’ = 2 . \sec^{2} 2x-5\\y’ = 2 \sec^{2} 2x-5\Jawab Nomor 3\y = \cos 5x^{3} + 2x -8\Misalkan \u = 5x^{3} + 2x -8\ maka \u’ = 15x^{2} + 2\\y’ = – u’ . \sin u\\y’ = – 15x^{2} + 2 . \sin 5x^{3} + 2x -8\\y’ = -15x^{2} – 2 \sin 5x^{3} + 2x -8\3. Contoh Soal Turunan Fungsi Trigonometri Menggunakan Rumus Pengembangan IITurunan trigonometri dengan rumus pengembangan II ini cukup kompleks bentuk rumusnya, akan tetapi masih mudah untuk di ingat karena sedikit mirip dengan bentuk rumus-rumus sebelumnya.\\color{red}{y = \sin^{n} u \to y’ = u’ . n .\sin^{n-1} u .\cos u}\\\color{red}{y = \cos^{n} u \to y’ = – u’ .n .\cos^{n-1} u . \sin u}\\\color{red}{y = \tan^{n} u \to y’ = u’ . n .\tan^{n-1} u . \sec^{2} u}\\\color{red}{y = \cot^{n} u \to y’ = – u’ .n .\cot^{n-1} u . \csc^{2} x}\\\color{red}{y = \sec^{n} u \to y’ = u’ . n .\sec^{n-1} u . \sec u . \tan u}\\\color{red}{y = \csc^{n} u \to y’ = – u’ .n .\csc^{n-1} u . \csc u . \cot u}\Sebelum membahas lebih jauh turunan fungsi trigonometri dan contoh soalnya, aku akan kasih tips dulu mengenai cara menghafal rumus turunan trigonometri pengembangan II coba bandingkan rumus pengembangan I dan pengembangan II. Aku ambil contoh turunan untuk I\y = \sin u \to y’ = u’ . \cos u\Pengembangan II\y = \sin^{n} u \to y’ = u’ . n .\sin^{n-1} u .\cos u\Bisa kalian lihat kan perbedaannya?\u’\ dan \\cos u\ tetap, yang bertambah hanya \n . \sin^{n-1} u\. Begitupun untuk rumus turunan trigonometri itulah sedikit tips untuk mengingat rumusnya versi mana rumus pengembangan II turunan fungsi trigonometri ini berasal?Sama halnya dengan dengan rumus pengembangan I, rumus pengembangan II juga berproses dari aturan rantai. Hanya saja aturan rantainya lebih kamu paham, aku akan jelasin dulu prosesnya dengan menggunakan aturan rantai. Setelah itu baru aku akan kasih contoh soal turunan fungsi trigonometri sekaligus dengan \y = \sin^{3} 2x^{5} – 7x\, tentukanlah turunan pertamanya!JawabTurunan pertama itu \y’\ atau \\frac{dy}{dx}\Misalkan \u = 2x^{5} – 7x\ maka \\frac{du}{dx} = 10x^{4} -7\Misalkan \v = \sin u\ maka \\frac{dv}{du} = \cos u\Sehingga \y = v^{3}\, maka \\frac{dy}{dv} = 3v^{2}\\\displaystyle \begin{aligned} \frac{dy}{dx} &= \frac{dy}{dv} . \frac{dv}{du} . \frac{du}{dx} \\ y’ &= 3v^{2} . \cos u . 10x^{4} -7 \\ y’ &= 3 \sin^{2} u. \cos u . 10x^{4} -7 \\ y’ &= 3 \sin^{2} 2x^{5} – 7x . \cos 2x^{5} – 7x . 10x^{4} -7 \\ y’ &= \color{red}{10x^{4} -7. 3 .\sin^{2} 2x^{5} – 7x . \cos 2x^{5} – 7x} \\ y’ &= 30x^{4} -21. \sin^{2} 2x^{5} – 7x . \cos 2x^{5} – 7x \end{aligned}\Perhatikan yang berwarna merah pada proses diatas!\10x^{4} -7\ adalah \u’\\3\ adalah \n\\\sin^{2}\ adalah \\sin^{n-1}\\2x^{5} – 7x\ adalah \u\Jika semuanya diganti dengan simbol-simbol diatas, maka \y’ = u’ . n . \sin^{n-1} u. \cos u\. Nah bentuk inilah yang disebut turunan dari fungsi trigonometri \y = \sin^{n} u\.Sekarang kalian udah paham kan darimana rumus pengembangan II itu berasal?Inilah contoh soal turunan fungsi trigonometri menggunakan rumus cepat. Simak baik-baik yaa!1. \y = \sin^{2} x\2. \\cot^{3} x^{2} – x+ 7\Jawab Nomor 1\y = \sin^{2} x\\n =2\, \u=x\, dan \u’=1\.\y’ = u’ . n .\sin^{n-1} u .\cos u\\y’ = 1 . 2. \sin^{2-1} x .\cos x\\y’ = 2. \sin^{1} x .\cos x\\y’ = 2 \sin x \cos x\\y’ = \sin 2x\Jawab Nomor 2\\cot^{3} x^{2} – x+ 7\\n =3\, \u=x^{2} – x+ 7\, dan \u’= 2x – 1\.\y’ = – u’ .n .\cot^{n-1} u . \csc^{2} u\\y’ = – 2x – 1 . 3 .\cot^{3-1} u . \csc^{2} u\\y’ = – 6x – 3 . \cot^{2} u . \csc^{2} u\\y’ = 3-6x . \cot^{2} x^{2} – x+ 7 . \csc^{2} x^{2} – x+ 7\Itulah pembahasan turunan fungsi trigonometri dan contoh. Nah untuk mengecek pemahaman kamu, sudah aku siapin nih soal-soal latihan yang bisa kamu adalah beberapa soal latihan turunan trigonometri yang bisa kamu kerjakan secara mandiri ataupun diskusi dengan turunan pertama dari fungsi-fungsi berikut!1. \y= 2x + \cos x\2. \fx = 4x^{2} + \cot x\3. \y= 2 \sin 3x \4. \y = 3 \cos 4x\5. \fx = 3x^{2} + \sin 5x – 4 \cos 2x\6. \fx = 2x \sin x\7. \fx = 3x^{2} \cos 2x\8. \y = \sin 2x \cos 3x\9. \\displaystyle y= \frac{3x^{2}}{\cos x}\10. \\displaystyle y= \frac{\cos 3x}{\cos 2x}\11. \y = \sin x \cos x\12. \y = \csc^{5} x^{4} + 5\13. \y = \cos^{4} x\14. \y = 5 \sin x \cos x\15. \y = \sqrt{\sin x}\16. Jika \fx = \sin x + \cos x +\tan x\, tentukanlah \f'0\!Akhirnya selesai juga nulis artikel ini, pegel banget nulisnya. Semoga tulisan ini bermanfaat untuk banyak orang, khusunya kamu yang sekarang sedang membaca tulisan penjelasan lengkap contoh soal turunan fungsi trigonometri. Bagikan tulisan ini agar semakin banyak orang yang paham mengenai materi turunan fungsi trigonometri ini! Daftar isi1. Grafik Fungsi Sinus 2. Grafik Fungsi Cosinus 3. Grafik Fungsi Tangen 4. Contoh Soal Grafik Fungsi Trigonometri dan Pembahasan Soal dan Pembahasan Grafik Fungsi Trigonometri. Mengulas trik-trik atau cara praktis untuk menentukan sketsa grafik fungsi trigonometri serta untuk menentukan nilai maksimum dan nilai minimum suatu grafik fungsi trigonometeri. Grafik fungsi trigonometri yang akan kita bahas di sini adalah grafik fungsi sinus, grafik fungsi cosinus dan grafik fungsi tangen. Fungsi trigonometri adalah sebuah fungsi periodik. Periodik artinya berulang-ulang secara teratur. Karena periodik, berarti ada periode. Apa itu Periode? Periode bisa kita sebut sebagai siklus, yaitu pengulangan hal yang sama setelah suatu selang tertentu. Misalnya kurva $y = sin\ x$ akan membentuk siklus setiap selang $360^{\circ}$. Berarti $y = sin\ x$ memiliki periode sebesar $360^{\circ}$. Supaya lebih jelas, kita akan membahas satu per satu dengan metode praktis. Grafik Fungsi SinusSebelum kita lanjutkan membahas fungsi sinus, sebaiknya kita ketahui terlebih dahulu dasar fungsi sinus, yaitu $1.\ y = sin\ x$ lihat gambar !. $2.\ y = sin^2\ x$ lihat gambar! Secara umum fungsi sinus dirumuskan sebagai Berikut $y = k\ sin\ ax ± \theta + c$ $\bullet$ Nilai maksimum fungsi $= k + c$ $\bullet$ Nilai minimum fungsi $= -k + c$ $\bullet$ Amplitudo $= k$ $\bullet$ Periode $= \dfrac{360^{\circ}}{a}$ $\bullet$ $+θ$ → fungsi $y = k\ sin\ ax$ digeser kekiri sejauh $θ$. $\bullet$ $-\theta$ → fungsi $y = k\ sin\ ax$ digeser kekanan sejauh $\theta$. $\bullet$ $+C$ → fungsi $y = k\ sin\ ax ± \theta$ digeser keatas sejauh $C$. $\bullet$ $-C$ → fungsi $y = k\ sin\ ax ± \theta$ digeser kebawah sejauh $C$. $\bullet$ $y = -k\ sin\ ax ± \theta$ adalah cermin dari $y = k\ sin\ ax ± \theta$ terhadap sumbu $x$.Grafik Fungsi CosinusDasar dari fungsi kosinus yaitu, $1.\ y = cos\ x$ lihat gambar! $2.\ y = cos^2\ x$ lihat gambar! Secara umum fungsi kosinus dirumuskan sebagai berikut $y = k\ cos\ ax ± \theta + c$ $\bullet$ Nilai maksimum fungsi $= k + c$ $\bullet$ Nilai minimum fungsi $= -k + c$ $\bullet$ Amplitudo $= k$ $\bullet$ Periode $= \dfrac{360^{\circ}}{a}$ $\bullet$ $+θ$ → fungsi $y = k\ cos ax$ digeser kekiri sejauh $θ$. $\bullet$ $-\theta$ → fungsi $y = k\ cos\ ax$ digeser kekanan sejauh $\theta$. $\bullet$ $+C$ → fungsi $y = k\ cos\ ax ± \theta$ digeser keatas sejauh $C$. $\bullet$ $-C$ → fungsi $y = k\ cos\ ax ± \theta$ digeser kebawah sejauh $C$. $\bullet$ $y = -k\ cos\ ax ± \theta$ adalah cermin dari $y = k\ cos\ ax ± \theta$ terhadap sumbu $x$.Grafik Fungsi TangenDasar dari fungsi tangen adalah $y = tan\ x.$ Perhatikan gambar! Secara umum fungsi tangen dirumuskan sebagai berikut $y = k\ tan\ ax ± θ + c$ $\bullet$ Nilai maksimum fungsi $= \infty$ $\bullet$ Nilai minimum fungsi $= -\infty$ $\bullet$ Periode $= \dfrac{180^{\circ}}{a}$ $\bullet$ $+θ$ → fungsi $y = k\ tan\ ax$ digeser kekiri sejauh $θ$. $\bullet$ $-\theta$ → fungsi $y = k\ tan\ ax$ digeser kekanan sejauh $\theta$. $\bullet$ $+C$ → fungsi $y = k\ tan\ ax ± θ$ digeser keatas sejauh $C$. $\bullet$ $-C$ → fungsi $y = k\ tan\ ax ± θ$ digeser kebawah sejauh $C$. $\bullet$ $y = -k\ tan\ ax ± θ$ adalah cermin dari $y = k\ tan\ ax ± θ$ terhadap sumbu $x$.Contoh soal 1. Gambarlah grafik dari $y = 2\ sin\ 2x$.$y = 2\ sin\ 2x$ $\bullet$ Dasarnya adalah grafik $y = sin\ x$. $\bullet$ Nilai maksimum $= 2$ dan nilai minimum $= -2$. $\bullet$ Periode = $\dfrac{360^{\circ}}{2} = 180^{\circ}$ $\bullet$ Perhatikan grafik $y = sin\ x$, periode $= 360^{\circ}$, memotong sumbu $x$ ditik $x = 0^{\circ},\ x = 180^{\circ}$, dan $x = 360^{\circ}$. Grafik $y = sin\ 2x$ periode $= 180^{\circ}$, akan memotong sumbu $x$ dititik $x = 0^{\circ},\ x = 90^{\circ}$, dan $x = 180^{\circ}$. titik potong $y = sin\ x$ dibagi dua $\bullet$ Grafik $y = sin\ x$ maksimum di $x = 90^{\circ}$ dan minimum di $x = 270^{\circ}$. Grafik $y = sin\ 2x$ maksimum di $x = 45^{\circ}$ dan minimum di $x = 135^{\circ}$. Grafiknya adalah seperti diatas. Contoh soal 2. Gambarlah grafik dari $y = 2\ sin\ 3x - 30^{\circ}$$\bullet$ Dasarnya adalah grafik $y = sin\ x$ dan grafik $y = 2\ sin\ 3x.$ $\bullet$ Nilai maksimum $= 2$ dan nilai minimum $= -2$. $\bullet$ Periode $= \dfrac{360^{\circ}}{3} = 120^{\circ}$ $\bullet$ Grafik $y = 2\ sin\ 3x - 30^{\circ}$ adalah grafik $y = 2\ sin\ 3x$ digeser $30^{\circ}$ ke kanan. $\bullet$ Grafik $y = 2\ sin\ 3x$ akan memotong sumbu $x$ di titik $x = 0^{\circ},\ x = 60^{\circ},\ dan\ x = 120^{\circ}$. titik potong $y = sin\ x$ dibagi tiga. Setelah digeser $30^{\circ}$, akan memotong sumbu $x$ di titik $x = 30^{\circ},\ x = 90^{\circ},\ dan\ x = 150^{\circ}$ $\bullet$ Grafik $y = 2\ sin\ 3x$ maksimum di titik $x = 30^{\circ}$ dan minimum di titik $x = 90^{\circ}$. Grafik $y = 2\ sin\ 3x - 30^{\circ}$ maksimum dititik $x = 60^{\circ}$ dan minimum dititik $x = 120^{\circ}$. Grafiknya adalah seperti diatas. Contoh soal 3. Gambarlah grafik dari $y = -2\ cos\ 3x$.$\bullet$ Dasarnya adalah grafik $y = cos\ x$ dan $y = 2\ cos\ 3x$. $\bullet$ Nilai maksimum $= -2 = 2$ dan nilai minimum $= -2 = -2$. $\bullet$ Periode $= \dfrac{360^{\circ}}{3} = 120^{\circ}$ $\bullet$ Perhatikan grafik $y = cos\ x$, periode $= 360^{\circ}$ memotong sumbu $x$ di titik $x = 90^{\circ}\ dan\ x = 270^{\circ}$. $\bullet$ grafik $y = 2\ cos\ 3x$ periode $120^{\circ}$ akan memotong sumbu $x$ di titik $30^{\circ}\ dan\ 90^{\circ}$ titik potong $y = cos\ x$ dibagi tiga $\bullet$ $y = -2\ cos\ 3x$ adalah cermin dari $y = 2\ cos\ 3x$ terhadap sumbu $x$. $\bullet$ Grafik $y = 2\ cos\ 3x$ maksimum di titik $x = 0^{\circ}\ dan\ x = 120^{\circ}$ dan minimum di titik $x = 60^{\circ}$ $\bullet$ Grafik $y = -2\ cos\ 3x$ minimum di titik $x = 0^{\circ}\ dan\ x = 120^{\circ}$ dan maksimum di titik $x = 60^{\circ}$. Grafiknya adalah seperti di atas. Contoh soal 4. Gambarlah grafik dari $y = 2\ cos\ 2x + 90^{\circ}$.$y = 2\ cos\ 2x + 90^{\circ}$ $y = 2\ cos\ 2x + 45^{\circ}$ $\bullet$ Dasarnya adalah grafik $y = cos\ x$ dan $y = 2\ cos\ 2x$. $\bullet$ Nilai maksimum $= 2$ dan nilai minimum $= -2$. $\bullet$ Periode $= \dfrac{360^{\circ}}{2} = 180^{\circ}$ $\bullet$ grafik $y = 2\ cos\ 2x + 45$ adalah grafik $y = 2\ cos\ 2x$ digeser $45^{\circ}$ ke kiri. $\bullet$ grafik $y = 2\ cos\ 2x$ periode $180^{\circ}$ akan memotong sumbu $x$ di titik $x = 45^{\circ}\ dan\ x = 135^{\circ}$. $\bullet$ Setelah digeser sejauh $45^{\circ}$ ke kiri, grafik akan memotong sumbu $x$ di titik $0^{\circ}$, $90^{\circ}$, dan $180^{\circ}$. $\bullet$ Grafik $y = 2\ cos\ 2x$ maksimum di titik $x = 0^{\circ}\ dan\ x = 180^{\circ}$ dan minimum di titik $x = 90^{\circ}$ $\bullet$ Grafik $y = 2\ cos\ 2x + 45$ maksimum di titik $x = 135^{\circ}$ dan minimum di titik $x = 45^{\circ}$. Grafiknya adalah seperti di atas. Untuk lebih memahami fungsi trigonometri, silahkan pelajari soal-soal dan pembahasan yang berikut ! Soal dan Pembahasan menggunakan metode praktis. Contoh Soal Grafik Fungsi Trigonometri dan PembahasanDengan Metode Praktis$1$. Nilai maksimum dan nilai minimum dari fungsi $y = 3\ sin\ 2x$ adalah . . . . $A.\ -2\ dan\ -5$ $B.\ 2\ dan\ -3$ $C.\ -3\ dan\ -5$ $D.\ 3\ dan\ -3$ $E.\ 5\ dan\ -3$ [Grafik Fungsi Trigonometri]$y = 3\ sin\ 2x$ $Nilai\ maksimum = 3 = 3$ $Nilai\ minimum = -3 = -3$ → D. $2$. Nilai maksimum dan nilai minimum dari fungsi $y = -4\ sin\ 3x - 60^o$ adalah . . . . $A.\ -3\ dan\ -4$ $B.\ 3\ dan\ -3$ $C.\ -4\ dan\ -5$ $D.\ 4\ dan\ -4$ $E.\ 7\ dan\ -4$ [Grafik Fungsi Trigonometri]$y = -4\ sin\ 3x - 60^o$ $Nilai\ maksimum = -4 = 4$ $Nilai\ minimum = -4 = -4$ → D. $3.$ Nilai maksimum dan nilai minimum dari fungsi $y = 5\ cos\ 3x$ adalah . . . . $A.\ 3\ dan\ -3$ $B.\ 4\ dan\ -5$ $C.\ 5\ dan\ -5$ $D.\ 6\ dan\ -3$ $E.\ 7\ dan\ 5$ [Grafik Fungsi Trigonometri]$y = 5\ cos\ 3x$ $Nilai\ maksimum = 5$ $Nilai\ minimum = -5$ → C. $4.$ Nilai maksimum dan nilai minimum dari fungsi $y = -3\ cos\ 2x + 30^o$ adalah . . . . $A.\ -2\ dan\ -3$ $B.\ 2\ dan\ -2$ $C.\ -3\ dan\ -5$ $D.\ 3\ dan\ -3$ $E.\ 5\ dan\ -5$ [Grafik Fungsi Trigonometri]$y = -3\ cos\ 2x + 30^o$ $Nilai\ maksimum = -3 = 3$ $Nilai\ minimum = -3 = -3$ → D. $5$. Nilai maksimum dan nilai minimum dari fungsi $y = 3\ sin^2\ 3x$ adalah . . . . $A.\ 1\ dan\ -1$ $B.\ 2\ dan\ -2$ $C.\ 3\ dan\ 0$ $D.\ 4\ dan\ -2$ $E.\ 5\ dan\ -1$ [Grafik Fungsi Trigonometri]$y = 3\ sin^2\ 3x$ $Nilai\ maksimum = 3$ $Nilai\ minimum = 0$ → C. Ingat ! jika $y = k\ sin^2\ ax$ $Nilai\ maksimum = k$ $Nilai\ minimum = 0$ $6$. Nilai maksimum dan nilai minimum dari fungsi $y = -5\ sin^2\ 2x$ adalah . . . . $A.\ -5\ dan\ -7$ $B.\ 0\ dan\ -5$ $C.\ -3\ dan\ -5$ $D.\ 3\ dan\ -3$ $E.\ 5\ dan\ -5$ [Grafik Fungsi Trigonometri]$y = -5\ sin^2\ 2x$ $Nilai\ maksimum = 0$ $Nilai\ minimum = -5$ → B. Ingat ! jika $y = -k\ sin^2\ ax$ $Nilai\ maksimum = 0$ $Nilai\ minimum = -k$ $7$. Nilai maksimum dan nilai minimum dari fungsi $y = 2\ sin\ 3x + 3$ adalah . . . . $A.\ -2\ dan\ 0$ $B.\ 0\ dan\ -2$ $C.\ 2\ dan\ 0$ $D.\ 3\ dan\ -1$ $E.\ 5\ dan\ 1$ [Grafik Fungsi Trigonometri]$y = 2\ sin\ 3x + 3$ $Nilai\ maksimum = 2 + 3 = 5$ $Nilai\ minimum = -2 + 3 = 1$ → E. $8$. Nilai maksimum dan nilai minimum dari fungsi $y = -3\ sin\ 2x - 60^o - 5$ adalah . . . . $A.\ -3\ dan\ -5$ $B.\ -2\ dan\ -8$ $C.\ 0\ dan\ -5$ $D.\ 2\ dan\ -3$ $E.\ 3\ dan\ -7$ [Grafik Fungsi Trigonometri]$y = -3\ sin\ 2x - 60^o - 5$ $Nilai\ maksimum = -3 - 5$ $ = 3 - 5 = -2$ $Nilai\ minimum = -3 - 5$ $ = -3 - 5 = -8$ → B. $9$. Nilai maksimum dan nilai minimum dari fungsi $y = -4\ cos\ 3x + 30^o + 2$ adalah . . . . $A.\ -4\ dan\ -2$ $B.\ -2\ dan\ 0$ $C.\ 2\ dan\ -2$ $D.\ 4\ dan\ 1$ $E.\ 6\ dan\ -2$ [Grafik Fungsi Trigonometri]$y = -4\ cos\ 3x + 30^o + 2$ $Nilai\ maksimum = -4 + 2$ $ = 4 + 2 = 6$ $Nilai\ minimum = -4 + 2$ $ = -4 + 2 = -2$ → E. $10$. Nilai maksimum dan nilai minimum dari fungsi $y = 3 - 2cos^2\ 2x$ adalah . . . . $A.\ -2\ dan\ -3$ $B.\ 0\ dan\ -2$ $C.\ 2\ dan\ 0$ $D.\ 3\ dan\ 1$ $E.\ 5\ dan\ 3$ [Grafik Fungsi Trigonometri]$y = 3 - 2\ cos^2\ 2x$ ⇔ $y = -2\ cos^2\ 2x + 3$ $Nilai\ maksimum = 0 + 3 = 3$ $Nilai\ minimum = -2 + 3 = 1$ → D. Ingat ! jika $y = -k\ cos^2\ ax$ $Nilai\ maksimum = 0$ $Nilai\ minimum = -k$ $y = k\ cos^2\ 2x$ $Nilai\ maksimum = k$ $Nilai\ minimum = 0$ $11$. Jika $0^{\circ} ≤ x ≤ 360^{\circ}$, maka fungsi $y = sin\ x - 30^{\circ}$ akan maksimum pada $x =$ . . . . $A.\ 60^{\circ}$ $B.\ 90^{\circ}$ $C.\ 120^{\circ}$ $D.\ 150^{\circ}$ $E.\ 180^{\circ}$ [Grafik Fungsi Trigonometri]$y = sin\ x - 30^{\circ}$ Perhatikan grafik $y = sin\ x$, maksimum di titik $x = 90^{\circ}$. Grafik $y = sin\ x - 30^{\circ}$ adalah hasil dari pergeseran $y = sin\ x$ sejauh $30^{\circ}$ kekanan. Akibatnya grafik $y = sin\ x - 30^{\circ}$ akan maksimum di titik $x = 90^{\circ} + 30^{\circ} = 120^{\circ}$ → C. $12$. Jika $0^{\circ} ≤ x ≤ 120^{\circ}$, maka fungsi $y = 2\ sin\ 3x$ akan maksimum pada $x =$ . . . . $A.\ 0^{\circ}$ $B.\ 15^{\circ}$ $C.\ 30^{\circ}$ $D.\ 45^{\circ}$ $E.\ 90^{\circ}$ [Grafik Fungsi Trigonometri]$y = 2\ sin\ 3x$ Perhatikan grafik $y = sin\ x$, maksimim di titik $x = 90^{\circ}$. Grafik $y = 2\ sin\ 3x$ akan maksimum di $x = 30^{\circ}$ → C. $13$. Jika $0^{\circ} ≤ x ≤ 180^{\circ}$, maka fungsi $y = -3\ cos\ 2x$ akan minimum pada $x =$ . . . . $A.\ 0^{\circ}\ dan\ 180^{\circ}$ $B.\ 30^{\circ}\ dan\ 120^{\circ}$ $C.\ 45^{\circ}\ dan\ 135^{\circ}$ $D.\ 60^{\circ}\ dan\ 150^{\circ}$ $E.\ 90^{\circ}\ dan\ 180^{\circ}$ [Grafik Fungsi Trigonometri]$y = -3\ cos\ 2x$ Perhatikan grafik $y = cos\ x$, minimum di titik $x = 180^{\circ}$ dan maksimum di titik $x = 0^{\circ}\ dan\ x = 360^{\circ}$. Grafik $y = -cos\ x$ adalah cermin dari grafik $y = cos\ x$ terhadap sumbu $x$. Akibatnya $y = -cos\ x$ maksimum di titik $x = 180^{\circ}$ dan minimum di titik $x = 0^{\circ}\ dan\ x = 360^{\circ}$. Grafik $y = -3\ cos\ 2x$ akan maksimum di titik $x = 90^{\circ}$ dan minimum di titik $x = 0^{\circ}$ dan $x = 180^{\circ}$ → A. $14$. Jika $0^{\circ} ≤ x ≤ 180^{\circ}$, maka fungsi $y = 3\ sin\ 2x - 30^{\circ}$ mempunyai titik maksimum di titik . . . . $A.\ 30^{\circ}, 3$ $B.\ 45^{\circ}, 3$ $C.\ 60^{\circ}, 3$ $D.\ 75^{\circ}, 3$ $E.\ 90^{\circ}, 3$ [Grafik Fungsi Trigonometri]$y = 3\ sin\ 2x - 30^{\circ}$ ⇔ $y = 3\ sin\ 2x - 15^{\circ}$ Perhatikan grafik $y = sin\ x$, maksimum di titik $x = 90^{\circ}$. Grafik $y = sin\ 2x$ akan maksimum di titik $x = 45^{\circ}$. Grafik $y = 3\ sin\ 2x - 15^{\circ}$ adalah hasil pergeseran dari grafik $y = sin\ 2x$ sejauh $15^{\circ}$ ke kanan. Akibatnya $y = 3\ sin\ 2x - 15^{\circ}$ akan maksimum di titik $x = 45^{\circ} + 15^{\circ} = 60^{\circ}$ → C. $15$. Jika $0^{\circ} ≤ x ≤ 180^{\circ}$, maka fungsi $y = 2\ cos\ 2x + 60^{\circ} - 1$ mempunyai titik minimum di titik . . . . $A.\ 30^{\circ}, -3$ $B.\ 45^{\circ}, -3$ $C.\ 60^{\circ}, -3$ $D.\ 75^{\circ}, -3$ $E.\ 90^{\circ}, -3$ [Grafik Fungsi Trigonometri]$y = 2\ cos\ 2x + 60^{\circ} - 1$ ⇔ $y = 2\ cos\ 2x + 30^{\circ} - 1$ Nilai minimum $= -2 - 1 = -3$ → $y = -3$. Grafik $y = 2\ cos\ 2x$ akan minimum di titik $x = 90^{\circ}$. Grafik $y = 2\ cos\ 2x + 30^{\circ} - 1$ adalah pergeseran grafik $y = 2\ cos \ 2x$ sejauh $30^{\circ}$ ke kiri. Akibatnya Grafik $y = 2\ cos\ 2x + 30^{\circ} - 1$ akan minimum di titik $x = 90^{\circ} - 30^{\circ} = 60^{\circ}$ → C. $16$. Jika $0^{\circ} ≤ x ≤ 120^{\circ}$, maka fungsi $y = -2\ cos\ 3x - 60^{\circ} + 2$ mempunyai titik minimum di titik . . . . $A.\ 40^{\circ}, -2$ $B.\ 20^{\circ}, 0$ $C.\ 40^{\circ}, 0$ $D.\ 90^{\circ}, -2$ $E.\ 120^{\circ}, 0$ [Grafik Fungsi Trigonometri]$y = -2\ cos\ 3x - 60^{\circ} + 2$ ⇔ $y = -2\ cos\ 3x - 20^{\circ} + 2$ Nilai minimum $= -2 + 2 = -2 + 2 = 0$. Grafik $y = -2\ cos\ 3x$ akan minimum di titik $x = 0^{\circ}\ dan\ x = 120^{\circ}$. Grafik $y = -2\ cos\ 3x - 20^{\circ} + 2$ adalah hasil pergeseran dari grafik $y = -2\ cos\ 3x$ sejauh $20^{\circ}$ ke kanan. Akibatnya $y = -2\ cos\ 3x - 20^{\circ} + 2$ akan minimum di titik $x = 20^{\circ}\ dan\ x = 140^{\circ}$. Jadi titik minimumnya adalah $20^{\circ}, 0\ dan\ 140^{\circ}, 0$ → B. $17$. Nilai minimum dari fungsi $y = 2 + cos^{2}3x$ dicapai pada $x =$ . . . . $A.\ 30^{\circ}$ $B.\ 45^{\circ}$ $C.\ 60^{\circ}$ $D.\ 75^{\circ}$ $E.\ 90^{\circ}$ [Grafik Fungsi Trigonometri]$y = 2 + cos^{2}\ 3x$ $y = cos^{2}\ x$ minimum di titik $x = 90^{\circ}\ dan\ x = 270^{\circ}$ → lihat gambar ! Berati $y = cos^{2}3x$ akan minimum di titik $x = 30^{\circ}\ dan\ x = 90^{\circ}$ → A. $18$. Periode dari fungsi $y = 2\ sin\ 3x - 30^{\circ}$ adalah . . . . $A.\ 90^{\circ}$ $B.\ 120^{\circ}$ $C.\ 150^{\circ}$ $D.\ 180^{\circ}$ $E.\ 360^{\circ}$ [Grafik Fungsi Trigonometri]$Periode = \dfrac{360^{\circ}}{3} = 120^{\circ}$ → B. $19$. Periode dari fungsi $y = -2\ cos\ 2x$ adalah . . . . $A.\ 90^{\circ}$ $B.\ 120^{\circ}$ $C.\ 150^{\circ}$ $D.\ 180^{\circ}$ $E.\ 360^{\circ}$ [Grafik Fungsi Trigonometri]$Periode = \dfrac{360^{\circ}}{2} = 180^{\circ}$ → D. $20$. Periode dari fungsi $y = -3\ sin\ 4x + 20^{\circ}$ adalah . . . . $A.\ 90^{\circ}$ $B.\ 120^{\circ}$ $C.\ 150^{\circ}$ $D.\ 180^{\circ}$ $E.\ 360^{\circ}$ [Grafik Fungsi Trigonometri]$Periode = \dfrac{360^{\circ}}{4} = 90^{\circ}$ → A. $21$. Periode dari fungsi $y = 5\ cos\ 6x - 30^{\circ}$ adalah . . . . $A.\ 30^{\circ}$ $B.\ 60^{\circ}$ $C.\ 90^{\circ}$ $D.\ 120^{\circ}$ $E.\ 180^{\circ}$ [Grafik Fungsi Trigonometri]$y = 5\ cos\ 6x - 30^{\circ}$ $y = 5\ cos\ 6x - 5^{\circ}$ $Periode = \dfrac{360^{\circ}}{6} = 60^{\circ}$ → B. $22$. Fungsi $y = 2\ sin\ 3x$ akan bernilai nol jika $x =$ . . . . $A.\ 30^{\circ}$ $B.\ 45^{\circ}$ $C.\ 60^{\circ}$ $D.\ 90^{\circ}$ $E.\ 105^{\circ}$ [Grafik Fungsi Trigonometri]$y = sin\ x$ akan bernilai nol jika $x = 0^{\circ}$, $x = 180^{\circ}$, dan $x = 360^{\circ}$. Berarti $y = 2\ sin\ 3x$ akan bernilai nol jika $x = 0^{\circ}$, $x = 60^{\circ}$, dan $x = 120^{\circ}$ → C. $23$. Persamaan dari grafik fungsi di bawah adalah . . . . $A.\ y = -2\ sin\ 2x$ $B.\ y = 2\ cos\ x$ $C.\ y = 2\ sin\ 2x - 30^{\circ}$ $D.\ y = -2\ cos\ 2x$ $E.\ y = 2\ sin\ 2x$ [Grafik Fungsi Trigonometri]$Periode = 180^{\circ}$ $Amplitudo = 2$ Jika diperhatikan, grafiknya adalah cermin dari grafik $y = sin\ 2x$ terhadap sumbu $x$. Berarti persamaan grafiknya adalah $y = -2\ sin\ 2x$. → A. $24$. Persamaan dari grafik di bawah adalah . . . . $A.\ y = sin\ x$ $B.\ y = cos\ x - 30^{\circ}$ $C.\ y = sin\ x - 30^{\circ}$ $D.\ y = cos\ x + 30^{\circ}$ $E.\ y = sin\ x + 30^{\circ}$ [Grafik Fungsi Trigonometri]$Periode = 360^{\circ}$ $Amplitudo = 1$ Grafiknya adalah grafik dari $y = sin\ x$ digeser sejauh $30^{\circ}$ ke kanan. Berarti persamaannya adalah $y = sin\ x - 30^{\circ}$ → C. $25$. Persamaan dari grafik dibawah adalah . . . . $A.\ y = 2\ sin\ 2x - 30^{\circ}$ $B.\ y = 2\ cos\ 2x - 30^{\circ}$ $C.\ y = -2\ cos\ 2x - 30^{\circ}$ $D.\ y = -2\ sin\ 2x - 30^{\circ}$ $E.\ y = -2\ cos\ 2x - 30^{\circ}$ [Grafik Fungsi Trigonometri]$Periode = 180^{\circ}$ $Amplitudo = 2$ Grafiknya adalah grafik dari $y = -2\ cos\ 2x$ digeser $30^{\circ}$ ke kanan. Berarti persamaannya adalah $y = -2\ cos\ 2x - 30^{\circ}$ → C. $26$. Persamaan dari grafik di bawah adalah . . . . $A.\ y = 2\ cos\ \left\dfrac{\pi}{2} + x\right$ $B.\ y = 2\ cos\ \left\dfrac{\pi}{2} - x\right$ $C.\ y = 2\ sin\ \left\dfrac{\pi}{2} + x\right$ $D.\ y = 2\ sin\ \left\dfrac{\pi}{2} - 2x\right$ $E.\ y = 2\ sin\ \left\dfrac{\pi}{2} + 2x\right$ [Grafik Fungsi Trigonometri]$Periode = 360^{\circ}$ $Amplitudo = 2$ Grafiknya adalah grafik dari $y = cos\ x$, tetapi tidak ada pada opsi. Ingat ! grafik dari $y = k\ cos\ x$ adalah grafik dari $y = k\ sin\ x$ digeser sejauh $90^{\circ}$ ke kiri. Dengan kata lain $y = 2\ cos\ x ⇔ y = 2\ sin\ \leftx + \dfrac{π}{2}\right$ → C. $27$. Persamaan dari grafik di bawah adalah . . . . $A.\ y = 2\ sin\ x$ $B.\ y = -2\ sin\ 2x$ $C.\ y = 2\ sin\ \left\dfrac{π}{2} + 2x\right$ $D.\ y = -2\ cos\ \left\dfrac{π}{2} + 2x\right$ $E.\ y = 2\ cos\ \left\dfrac{π}{2} + 2x\right$ [Grafik Fungsi Trigonometri]$Periode = 180^{\circ}$ $Amplitudo = 2$ Sangat jelas bahwa grafiknya adalah grafik dari $y = 2\ sin\ 2x$, tetapi tidak ada pada opsi. Ingat ! A. Grafik dari $y = 2\ sin\ 2x$ adalah grafik dari $y = 2\ cos\ 2x$ di geser sejauh $\dfrac{\pi}{4}$ ke kanan. Berarti $y = 2\ sin\ 2x ⇔ y = 2\ cos\ 2\leftx - \dfrac{\pi}{4}\right$ tetapi tidak ada juga pada opsi. B. Grafik dari $y = 2\ sin\ 2x$ adalah grafik dari $y = -2\ cos\ 2x$ di geser sejauh $\dfrac{\pi}{4}$ ke kiri. Berarti $y = 2\ sin\ 2x ⇔ y = - 2\ cos\ 2\leftx + \dfrac{\pi}{4}\right$ $⇔ y = - 2\ cos\ \left2x + \dfrac{\pi}{2}\right$ → D. 28. Persamaan dari grafik di bawah adalah . . . . $A.\ y = tan\ 2x$ $B.\ y = 2\ tan\ 2x$ $C.\ y = tan\ \dfrac12x$ $D.\ y = -2\ tan\ x$ $E.\ y = 2\ tan\ x$ [Grafik Fungsi Trigonometri]$Periode = 90^{\circ}$ → $y = k\ tan\ 2x$. Masukkan $x = 22,5^{\circ}$ dan $y = 2$ kedalam persamaan $y = k\ tan\ 2x$, didapat $k = 2$. Maka persamaannya adalah $y = 2\ tan\ 2x$ → B. $29$. Persamaan dari grafik di bawah adalah . . . . $A.\ y = sin\ 2x - 30^{\circ} + 1$ $B.\ y = sin\ 2x - 30^{\circ} + 1$ $C.\ y = cos\ 2x - 30^{\circ} + 1$ $D.\ y = cos\ 2x - 30^{\circ} + 1$ $E.\ y = 2\ sin\ 2x + 30^{\circ} + 1$ [Grafik Fungsi Trigonometri]$Periode = 180^{\circ}$ $Amplitudo = 1$ Sangat jelas terlihat bahwa grafiknya adalah grafik dari $y = sin\ 2x$ digeser sejauh $30^{\circ}$ ke kanan, kemudian digeser $1$ satuan ke atas. Berarti persamaannya adalah $y = sin 2x - 30^{\circ} + 1$ → A. $30$. Persamaan dari grafik di bawah adalah . . . . $A.\ y = cos\ 2x - 60^{\circ}$ $B.\ y = sin\ 2x - 60^{\circ}$ $C.\ y = cos\ 2x - 60^{\circ}$ $D.\ y = sin\ 2x - 60^{\circ}$ $E.\ y = cos\ 2x - 60^{\circ}$ [Grafik Fungsi Trigonometri]$Periode = 180^{\circ}$ $Amplitudo = 1$ Grafiknya adalah grafik dari $y = cos\ 2x$ digeser $30^{\circ}$ ke kanan. Berarti persamaannya adalah $y = cos\ 2x - 30^{\circ}$ $y = cos\ 2x - 60^{\circ}$ → A. Demikianlah Soal dan Pembahasan Grafik Fungsi Trigonometri, semoga bermanfaat. Selamat belajar ! Disusun oleh Joslin Sibarani Alumni Teknik Sipil ITBSHARE THIS POST

soal dan pembahasan turunan fungsi trigonometri